

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Solvent Effects on Environmentally Coupled Hydrogen Tunnelling During Catalysis by Dihydrofolate Reductase from *Thermotoga maritima*

E. Joel Loveridge, Rhiannon M. Evans and Rudolf K. Allemann

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.

Supporting Information

TABLES

	Viscosity / mPa.s		Dielectric constant	
Solvent composition	20 °C	40 °C	20 °C	40 °C
No cosolvent	1	0.66	79	73.1
17 % methanol	1.25	0.8	75	69.3
33 % methanol	1.5	1	65	60
50 % methanol	1.6	1.1	58	53.6
17 % ethanol	1.45	1	71	65
33 % ethanol	2	1.5	60.7	56
50 % ethanol	2.3	1.8	52	48
17 % isopropanol	1.5	1	69.8	64
33 % isopropanol	2.1	1.6	59.4	55
50 % isopropanol	2.6	1.9	50	47
17 % ethylene glycol	1.6	1	76	66
33 % ethylene glycol	2.4	1.6	70	60
50 % ethylene glycol	3.4	2.4	65	54
17 % glycerol	1.8	1.1	74.4	67.5
33 % glycerol	3.4	2	67.7	62.7
50 % glycerol	8	4	62	57.3
17 % sucrose	1.8	1.1	76.5	68.5
30 % sucrose	3.4	1.9	72.6	65.6
17 % tetrahydrofuran	1	0.7	66.7	60
33 % tetrahydrofuran	1.2	0.85	54.1	47
50 % tetrahydrofuran	1.4	1	40	37

Table S1. Viscosity and dielectric constant of the solvent mixtures used in this study. Values were obtained from various literature sources.^{1.9}

	20 °C				40 °C	
Solvent composition	<i>k_{cat}</i> / s ⁻¹	KIE (k _{cat})	<i>k_H</i> / s ⁻¹	KIE (<i>k_H</i>)	<i>k_H</i> / s ⁻¹	KIE (<i>k_H</i>)
	0.075	2.80	0.122	4.52	0.488	4.21
No cosolvent	± 0.002	± 0.01	± 0.003	± 0.20	± 0.010	± 0.27
	0.074	2.22	0.116	4.48	0.450	3.45
17 % methanol	± 0.003	± 0.09	± 0.002	± 0.20	± 0.006	± 0.06
	0.042	1.73	0.086	5.02	0.402	3.76
33 % methanol	± 0.002	± 0.10	± 0.003	± 0.04	± 0.006	± 0.04
	0.011	1.31	0.060		0.196	3.76
50 % methanol	± 0.002	± 0.44	± 0.008	5.26 ± 0.16	± 0.009	± 0.06
	0.060	2.14	0.101		0.434	4.27
17 % ethanol	± 0.002	± 0.11	± 0.001	4.61 ± 0.08	± 0.003	± 0.06
	0.037	2.09	0.76		0.272	3.43
33 % ethanol	± 0.005	± 0.16	± 0.001	4.39 ± 0.06	± 0.004	± 0.08
	0.028	1.96	0.046		0.156	3.65
50 % ethanol	± 0.004	± 0.16	± 0.001	4.48 ± 0.06	± 0.038	± 0.16
	0.053	2.28	0.077	2.68	0.402	4.25
17 % isopropanol	± 0.002	± 0.11	± 0.001	± 0.05	± 0.002	± 0.03
	0.028	1.96	0.071	4.08	0.259	4.78
33 % isopropanol	± 0.002	± 0.12	± 0.007	± 0.10	± 0.003	± 0.04
	0.015	1.91	0.051	4.03	0.130	4.89
50 % isopropanol	± 0.001	± 0.15	± 0.007	± 0.17	± 0.006	± 0.06
	0.065	2.57	0.119	4.79	0.490	4.62
17 % ethylene glycol	± 0.002	± 0.09	± 0.001	± 0.05	± 0.007	± 0.09
	0.038	2.29	0.106	5.35	0.437	5.09
33 % ethylene glycol	± 0.002	± 0.10	± 0.002	± 0.08	± 0.002	± 0.02
	0.014	1.83	0.078	4.30	0.292	4.76
50 % ethylene glycol	± 0.002	± 0.35	± 0.011	± 0.14	± 0.022	± 0.14
	0.061	2.32	0.154	3.63	0.580	3.05
17 % glycerol	± 0.001	± 0.19	± 0.005	± 0.13	± 0.027	± 0.10
	0.053	2.04	0.207	2.96	0.779	2.62
33 % glycerol	± 0.006	± 0.28	± 0.015	± 0.12	± 0.028	± 0.18
	0.019	1.19	0.301	2.42	1.112	2.28
50 % glycerol	± 0.001	± 0.10	± 0.036	± 0.14	± 0.057	± 0.16
	0.074	2.64	0.155	3.48	0.624	3.52
17 % sucrose	± 0.003	± 0.05	± 0.007	± 0.16	± 0.015	± 0.04
	0.074	2.32	0.139	3.34	0.501	3.15
30 % sucrose	± 0.001	± 0.07	± 0.003	± 0.15	± 0.003	± 0.04
	0.025	3.36	0.031	4.09	0.113	4.32
17 % tetrahydrofuran	± 0.002	± 0.18	± 0.001	± 0.02	± 0.028	± 0.25
	0.0092	2.89	0.012	3.14	0.014	2.12
33 % tetrahydrofuran	± 0.0010	± 0.16	± 0.001	± 0.23	± 0.001	± 0.07
	0.0024	2.97	0.0029	2.92	0.0086	3.34
50 % tetrahydrofuran	± 0.0003	± 0.28	± 0.0010	± 0.47	± 0.0014	± 0.21

Table S2. Kinetic parameters for the reaction of NADPH and H_2F catalysed by TmDHFR in the presence of cosolvents.

	<i>k_H</i> / s⁻¹				<i>k</i> _D / s⁻¹			
T / °C	0 % ¹	17 %	33 %	50 %	0 % ¹	17 %	33 %	50 %
	0.044	0.044	0.020	0.018	0.0066	0.0077	0.0051	0.005
	±	±	±	±	±	±	±	±
7	0.001 ²	0.001	0.003	0.001	0.0002 ²	0.0005	0.0008	0.001
	0.06	0.053	0.042	0.021	0.0097	0.0092	0.0084	0.005
	±	±	±	±	±	±	±	±
10	0.003 ²	0.002	0.004	0.001	0.001 ²	0.0009	0.0013	0.001
	0.087	0.078	0.065	0.047	0.016	0.015	0.012	0.010
	±	±	±	±	±	±	±	±
15	0.002 ²	0.002	0.003	0.004	0.001 ²	0.0003	0.002	0.001
	0.122	0.116	0.086	0.060	0.027	0.024	0.017	0.011
	±	±	±	±	±	±	±	±
20	0.003	0.002	0.003	0.008	0.001	0.005	0.001	0.001
	0.169	0.165	0.140	0.100	0.042	0.043	0.037	0.024
	±	±	±	±	±	±	±	±
25	0.002	0.003	0.006	0.003	0.003	0.002	0.002	0.005
	0.242	0.238	0.206	0.119	0.06	0.066	0.055	0.029
	±	±	±	±	±	±	±	±
30	0.005	0.008	0.004	0.006	0.002	0.001	0.001	0.004
	0.341	0.329	0.289	0.158	0.082	0.093	0.081	0.041
	±	±	±	±	±	±	±	±
35	0.006	0.009	0.005	0.004	0.005	0.009	0.002	0.002
	0.488	0.450	0.402	0.196	0.116	0.130	0.107	0.052
	±	±	±	±	±	±	±	±
40	0.010	0.006	0.006	0.009	0.007	0.007	0.004	0.002
	0.668	0.652	0.579	0.233	0.161	0.166	0.143	0.064
	±	±	±	±	±	±	±	±
45	0.015	0.057	0.029	0.019	0.003	0.007	0.012	0.010
	0.932	0.844	0.780	0.372	0.245	0.245	0.208	0.095
	±	±	±	±	±	±	±	±
50	0.036	0.073	0.018	0.026	0.011	0.005	0.015	0.011
	1.253				0.336			
	±				±			
55	0.057				0.015			
	1.654				0.444			
	±				±			
60	0.093				0.019			
	2.12				0.575			
	±				±			
65	0.159				0.013			
Data from	Maglia and Al	lemann (2003) ¹⁰ ² Data me	asured at 6 °C	, 11 ⁰C and 16	6°C.		

Table S3. Temperature dependence of the pre-steady-state kinetic parameters for the reaction of NADPH and H_2F catalysed by TmDHFR in thepresence of varying concentrations of methanol.

	<i>k_H</i> / s⁻¹				<i>k</i> _D / s ⁻¹			
T / °C	0 % ¹	17 %	33 %	50 %	0 % ¹	17 %	33 %	50 %
	0.044	0.058	0.076	0.103	0.0066	0.012	0.017	0.028
	±	±	±	±	±	±	±	±
6	0.001	0.006	0.007	0.004	0.0002	0.001	0.003	0.002
		0.061	0.096	0.125		0.012	0.023	0.036
		±	±	±		±	±	±
8	nd	0.001	0.001	0.007	nd	0.001	0.002	0.001
	0.06	0.072	0.107	0.138	0.0097	0.015	0.030	0.048
	±	±	±	±	±	±	±	±
10	0.003 ²	0.005	0.007	0.009	0.001 ²	0.001	0.003	0.010
		0.089	0.132	0.173		0.021	0.038	0.069
		±	±	±		±	±	±
12.5	nd	0.001	0.006	0.005	nd	0.001	0.002	0.002
	0.087	0.103	0.147	0.200	0.016	0.028	0.050	0.081
	±	±	±	±	±	±	±	±
15	0.002 ²	0.010	0.009	0.018	0.001 ²	0.004	0.004	0.005
		0.126				0.035		
		±				±		
17.5	nd	0.003	nd	nd	nd	0.004	nd	nd
	0.122	0.154	0.207	0.301	0.027	0.047	0.070	0.124
	±	±	±	±	±	±	±	±
20	0.003	0.005	0.015	0.036	0.001	0.003	0.007	0.011
	0.169	0.208	0.302	0.414	0.042	0.066	0.112	0.182
	±	±	±	±	±	±	±	±
25	0.002	0.021	0.009	0.068	0.003	0.006	0.007	0.02
	0.242	0.291	0.424	0.607	0.06	0.094	0.152	0.287
	±	±	±	±	±	±	±	±
30	0.005	0.033	0.013	0.020	0.002	0.011	0.014	0.027
	0.341	0.408	0.556	0.791	0.082	0.130	0.209	0.362
	±	±	±	±	±	±	±	±
35	0.006	0.035	0.026	0.054	0.005	0.013	0.037	0.029
	0.488	0.580	0.779	1.112	0.116	0.190	0.298	0.487
	±	±	±	±	±	±	±	±
40	0.010	0.027	0.028	0.057	0.007	0.017	0.052	0.073
	0.668	0.788	1.100	1.510	0.161	0.252	0.394	0.744
	±	±	±	±	±	±	±	±
45	0.015	0.025	0.089	0.091	0.003	0.028	0.059	0.060
	0.932	1.061	1.571	2.180	0.245	0.362	0.597	0.970
	±	±	±	±	±	±	±	±
50	0.036	0.019	0.189	0.128	0.011	0.045	0.065	0.127
Data from	Maglia and All	emann (2003)	🐃 - Data mea	sured at 11 °C	and 16°C.			

Table S4. Temperature dependence of the pre-steady-state kinetic parameters for the reaction of NADPH and H_2F catalysed by TmDHFR in the presence of varying concentrations of glycerol.

	<i>k_H</i> / s⁻¹			<i>k</i> _D / s⁻¹		
T/°C	0 % ¹	17 %	30 %	0 % ¹	17 %	30 %
	0.044	0.071	0.066	0.0066	0.019	0.019
	±	±	±	±	±	±
6	0.001	0.005	0.009	0.0002	0.001	0.001
	0.06	0.082	0.084	0.0097	0.021	0.025
	±	±	±	±	±	±
10	0.003 ²	0.001	0.006	0.001 ²	0.002	0.001
	0.087	0.109	0.106	0.016	0.030	0.032
	±	±	±	±	±	±
15	0.002 ²	0.001	0.003	0.001 ²	0.004	0.002
	0.122	0.155	0.139	0.027	0.045	0.042
	±	±	±	±	±	±
20	0.003	0.002	0.002	0.001	0.007	0.006
	0.169	0.230	0.206	0.042	0.070	0.060
	±	±	±	±	±	±
25	0.002	0.001	0.006	0.003	0.013	0.005
	0.242	0.326	0.285	0.06	0.094	0.092
20	±	±	±	±	±	±
30	0.005	0.003	0.010	0.002	0.010	0.009
	0.341	0.459	0.391	0.082	0.130	0.126
25	I 0.006	т 0.014	T 0.009	I 0.005	T 0.002	I 0.006
30	0.000	0.014	0.008	0.005	0.002	0.000
	0.400 +	+	+	0.110 +	0.170 +	+
40	<u>+</u> 0.010	- 0.015	<u> </u>	0.007	⊥ 0.007	⊥ 0.006
10	0.668	0.838	0 764	0 161	0 223	0 222
	±	±	±	±	±	±
45	0.015	0.008	0.026	0.003	0.012	0.004
	0.932	1.096	0.948	0.245	0.348	0.293
	±	±	±	±	±	±
50	0.036	0.005	0.044	0.011	0.042	0.007
	1.253			0.336		
	±			±		
55	0.057			0.015		
	1.654			0.444		
	±			±		
60	0.093			0.019		
	2.12			0.575		
	±			±		
65	0.159		10 2 -	0.013		

¹ Data from Maglia and Allemann (2003)¹⁰² Data measured at 11 °C and 16°C.

Table S5. Temperature dependence of the pre-steady-state kinetic parameters for the reaction of NADPH and H_2F catalysed by TmDHFR in thepresence of varying concentrations of sucrose.

	0 % ¹	Methanol	Methanol			Glycerol			Sucrose	
		17 %	33 %	50 %	17 %	33 %	50 %	17 %	30 %	
	6.67	5.74	3.95	3.73	4.93	4.43	3.64	3.79	3.55	
6	$\pm 0.25^{2}$	$\pm 0.07^{2}$	$\pm 0.20^{2}$	$\pm 0.21^{2}$	± 0.14	± 0.20	± 0.10	± 0.11	± 0.14	
					4.89	4.15	3.49			
8	nd	nd	nd	nd	± 0.12	± 0.07	± 0.07	nd	nd	
	6.19	5.75	4.98	3.93	4.71	3.59	2.87	3.93	3.42	
10	$\pm 0.71^{2}$	± 0.10	± 0.19	± 0.03	± 0.10	± 0.12	± 0.23	± 0.10	± 0.09	
					4.21	3.42	2.51			
12.5	nd	nd	nd	nd	± 0.06	± 0.07	± 0.04	nd	nd	
	5.44	5.27	5.37	4.90	3.63	2.96	2.46	3.60	3.28	
15	$\pm 0.36^{2}$	± 0.03	± 0.18	± 0.15	± 0.17	± 0.11	± 0.11	± 0.12	± 0.06	
					3.63					
17.5	nd	nd	nd	nd	± 0.13	nd	nd	nd	nd	
	4.52	4.88	5.02	5.26	3.29	2.96	2.42	3.48	3.34	
20	± 0.2	± 0.20	± 0.04	± 0.16	± 0.08	± 0.12	± 0.15	± 0.16	± 0.15	
	4.02	3.87	3.80	4.20	3.17	2.71	2.27	3.29	3.45	
25	± 0.29	± 0.05	± 0.06	± 0.20	± 0.14	± 0.07	± 0.20	± 0.18	± 0.09	
	4.03	3.58	3.76	4.12	3.10	2.79	2.12	3.48	3.11	
30	± 0.16	± 0.03	± 0.03	± 0.15	± 0.16	± 0.10	± 0.10	± 0.17	± 0.10	
	4.16	3.53	3.55	3.86	3.13	2.66	2.18	3.52	3.10	
35	± 0.26	± 0.11	± 0.04	± 0.05	± 0.13	± 0.18	± 0.11	± 0.04	± 0.05	
	4.21	3.47	3.76	3.76	3.05	2.62	2.28	3.52	3.16	
40	± 0.27	± 0.06	± 0.04	± 0.06	± 0.10	± 0.18	± 0.16	± 0.04	± 0.04	
	4.15	3.92	4.05	3.62	3.13	2.79	2.03	3.76	3.43	
45	± 0.12	± 0.10	± 0.10	± 0.17	± 0.12	± 0.17	± 0.10	± 0.06	± 0.04	
	3.80	3.44	3.75	3.90	2.93	2.63	2.25	3.1	3.24	
50	± 0.23	± 0.09	± 0.07	± 0.14	± 0.12	± 0.16	± 0.14	± 0.12	± 0.05	
	3.73									
55	± 0.24									
	3.73									
60	± 0.26									
	3.69									

65 ± 0.29

 1 Data from Maglia and Allemann (2003) $^{10\ 2}$ Data measured at 6 °C, 11 °C and 16 °C.

Table S6. Temperature dependence of the kinetic isotope effects for the reaction of NADPH and H_2F catalysed by TmDHFR in the presence of varying concentrations of methanol.

T/°C

KIE

Cosolvent	$E_a^H / kJ.mol^{-1}$	E _a ^D / kJ.mol ⁻¹	ΔE_a / kJ.mol ⁻¹	A _H / s ⁻¹	A _D / s ⁻¹	A_H/A_D	KIE
None	53.5 ± 0.4	56.0 ± 0.8	2.5 ± 1.0	(4.11 ± 0.68) x 10 ⁸	(2.67 ± 0.86) x 10 ⁸	1.56 ± 0.47	3.9 ± 0.2
17 % glycerol	52.5 ± 0.4	54.3 ± 0.9	1.8 ± 1.0	(3.31 ± 0.55) x 10 ⁸	(2.14 ± 0.71) x 10 ⁸	1.55 ± 0.58	3.1 ± 0.1
33 % glycerol	52.1 ± 1.1	54.2 ± 1.3	2.1 ± 1.7	(3.97 ± 1.68) x 10 ⁸	(3.26 ± 1.70) x 10 ⁸	1.22 ± 0.82	2.7 ± 0.1
50 % glycerol	51.7 ± 0.8	54.4 ± 1.3	2.7 ± 1.5	(4.69 ± 1.39) x 10 ⁸	(6.10 ± 3.03) x 10 ⁸	0.77 ± 0.45	2.2 ± 0.1
17 % sucrose	48.9 ± 1.1	50.8 ± 1.2	1.9 ± 1.7	$(8.89 \pm 4.00) \times 10^7$	(5.31 ± 2.60) x 10 ⁷	1.68 ± 1.12	3.6 ± 0.2
30 % sucrose	46.5 ± 1.2	47.7 ± 1.1	1.2 ± 1.6	(2.94 ± 1.46) x 10 ⁷	(1.46 ± 0.62) x 10 ⁷	2.02 ± 1.32	3.3 ± 0.2

Table S7. Activation energies and Arrhenius prefactors for the region of TmDHFR catalysis showing temperature-independent KIEs, in the presence of varying concentrations of glycerol and sucrose.

Cosolvent	E _a ^H / kJ.mol ⁻¹	$E_a^D / kJ.mol^1$	ΔE_a / kJ.mol ⁻¹	A _H / s ⁻¹	A _D / s ⁻¹	A _H /A _D
None	49.9 ± 1.7	69.2 ± 3.7	18.5 ± 6.7	$(7.66 \pm 0.50) \times 10^7$	(3.18 ± 0.34) x 10 ¹⁰	(2.41 ± 0.30) x 10 ⁻³
17 % glycerol	48.7 ± 2.1	70.1 ± 3.4	21.4 ± 4.0	(7.14 ± 0.35) x 10 ⁷	(1.42 ± 0.80) x 10 ¹¹	(5.03 ± 0.37) x 10 ⁻⁴
33 % glycerol	48.4 ± 4.4	78.0 ± 3.8	29.6 ± 5.8	(9.05 ± 0.92) x 10 ⁷	(7.09 ± 0.39) x 10 ¹²	(1.28 ± 0.15) x 10 ⁻⁵
50 % glycerol	51.2 ± 3.9	91.7 ± 3.1	40.4 ± 5.0	(4.04 ± 0.34) x 10 ⁸	(3.98 ± 0.15) x 10 ¹⁵	(1.01 ± 0.09) x 10 ⁻⁷

 Table S8. Activation energies and Arrhenius prefactors for the region of TmDHFR catalysis showing temperature-dependent KIEs, in the presence of varying concentrations of glycerol.

Figure S1. CD spectra of TmDHFR (10 μ M) at 20 °C in the presence of 50% of organic cosolvents. Dark green = no cosolvent, light green = tetrahydrofuran, yellow = sucrose, orange = glycerol, red = ethylene glycol, maroon = isopropanol, dark blue = ethanol, and light blue = methanol.

Figure S2. Temperature dependence of the CD signal at 222 nm of TmDHFR in the presence of 50% methanol (light blue), glycerol (orange), sucrose (yellow), or no cosolvent (dark green). Conditions as described for Figure S1.

REFERENCES

- [1] Akerlof, G. J. Am. Chem. Soc. 1932, 54, 4125-4139.
- [2] Yilmaz, H. Turk. J. Phys. 2002, 26, 243-246.
- [3] http://www.meglobal.biz/literature/product_guides/.
- [4] http://www.dow.com/glycerine/resources/physicalprop.htm.
- [5] Rampp, M.; Buttersack, C.; Ludemann, H. D. Ind. Eng. Chem. Res. 2000, 39, 4400-4407.
- [6] Malmberg, C. G.; Maryott, A. A. J. Res. Nat. Bur. Stand. 1950, 45, 299-303.
- [7] Barbosa, J.; Barron, D.; Buti, S. Electroanal. 1999, 11, 627-631.
- [8] Nayak, J. N.; Aralaguppi, M. I.; Naidu, B. V. K.; Aminabhavi, T. M. J. Chem. Eng. Data 2004, 49, 468-474.
- [9] Hay, S.; Pudney, C. R.; Sutcliffe, M. J.; Scrutton, N. S. Angew. Chem. Int. Ed. 2008, 47, 537-540.
- [10] Maglia, G.; Allemann, R. K. J. Am. Chem. Soc. 2003, 125, 13372-13373.